
The Zonnon Project:
A .NET Language and Compiler Experiment

Jürg Gutknecht
Swiss Fed Inst of Technology

(ETH)
Zürich, Switzerland

gutknecht@int.ethz.ch

Vladimir Romanov
Moscow State University

Computer Science Department
Moscow, Russia

romsrcc@rom.srcc.msu.su

Eugene Zueff
Swiss Fed Inst of Technology

(ETH)
Zürich, Switzerland

zueff@inf.ethz.ch

ABSTRACT

Zonnon is a new programming language that combines the style and the virtues of the Pascal family with a
number of novel programming concepts and constructs. It covers a wide range of programming models from
algorithms and data structures to interoperating active objects in a distributed system. In contrast to popular
object-oriented languages, Zonnon propagates a symmetric compositional inheritance model. In this paper, we
first give a brief overview of the language and then focus on the implementation of the compiler and builder on
top of .NET, with a particular emphasis on the use of the MS Common Compiler Infrastructure (CCI). The Zonnon
compiler is an interesting showcase for the .NET interoperability platform because it implements a non-trivial but
still “natural” mapping from the language’s intrinsic object model to the underlying CLR.

Keywords
Oberon, Zonnon, Compiler, Common Compiler Infrastructure (CCI), Integration.

1. INTRODUCTION: THE BRIEF
HISTORY OF THE PROJECT
This is a technical paper presenting and describing
the current state of the Zonnon project. Zonnon is an
evolution of the Pascal, Modula, Oberon language
line [Wir88]. Major language concepts and some
considerations concerning the system architecture
were presented in a number of papers during the last
two years [Gut02, Gut03].

The project emerged from our participation in Projects
7 and 7+, a collaboration initiative launched by
Microsoft Research in 1999 with the goal of
implementing an exemplary set of non-standard
programming languages for the .NET interoperability
platform. Our part was Oberon for .NET, an
interoperable descendant of Pascal and Modula-2.

The motivation for continuing the research was
twofold: a) to explore the potential of .NET and in
particular of the new compiler integration technology

CCI and b) to experiment with evolutionary language
concepts. The notion of active object was taken from
the Active Oberon language [Gut01]. In addition, two
new concurrency mechanisms have been added: an
accompanying communication mechanism based on
syntax-oriented protocols , borrowed from the Active
C# project [Gun04], and an experimental
“asynchronous” statement execution construct.

The new language was called Zonnon. It uses a
compositional inheritance model. Typically, an object
implements a specified set of definitions, each one
accompanied by a default implementation that is
aggregated into the object’s state space. The syntax
of Zonnon is presented in the [Zon05] document.

2. CURRENT STATE OF THE
PROJECT
The core language is defined and stable but there are
still ongoing experiments in the area of concurrency.
The current compiler is a well-tested beta version. A
specifically developed comprehensive Zonnon test
suite containing more than 1500 Zonnon test cases
and covering all language features is used for
systematic testing of the compiler.

There are three user environments for the Zonnon
compiler: command-line, Zonnon Builder and Visual
Studio .NET. We note that, to the best of our
knowledge, the Zonnon compiler is the first compiler

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech
Republic

developed outside of Microsoft that is fully
integrated into Visual Studio. It is currently used in an
experimental programming course for junior students
in Nizhny Novgorod University, Russia [Ger05].

3. BRIEF INTRODUCTION TO
ZONNON
Being a member of Pascal family of languages and
thanks to a high degree of compatibility, Zonnon is
immediately familiar to Modula/Oberon programmers.
Most Oberon programs from the domain of algorithms
and data structures are successfully compiled by the
Zonnon compiler after just a few minor modifications.

However, from the perspective of “programming-in-
the-large”, Zonnon is much more elaborate compared
to its predecessors. There are four different kinds of
program units in Zonnon: objects, modules,
definitions and implementations. The first two are
program units to be instantiated at runtime, the third
is a compile time unit of abstraction and the fourth is
a unit of composition. Here is a brief characterization:

Object is a self-contained run-time program entity. It
can be instantiated dynamically under program
control in arbitrary multiplicity. Compared to Oberon,
the notion of object is conceptually upgraded in
Zonnon by the option of adding one or more
encapsulated activities that control the intrinsic
behavior of the object.

Module can be considered as a singleton object
whose creation is controlled by the system. In
addition, a module may act as a container of logically
connected abstract data types and structural units of
the runtime environment. In combination with the
import relation, the module construct is a powerful
system structuring tool that is missing in most
modern object-oriented languages.

Definition is an abstract view on an object from a
certain perspective or, in other words, an abstract
presentation of one or more of its facets.

Implementation typically provides a possibly partial
default implementation of the corresponding
definition. It is a unit of reuse and composition that is
aggregated into the state space of an object or
module either at compile time or at runtime.

Zonnon also provides a novel object-oriented
concurrency model that follows the metaphor of
autonomous active objects interoperating with each
other. The model incorporates encapsulated threads
of activity serving two purposes: expressing intrinsic
behavior and carrying out formal dialogs. Active C#
provides a proof of concept for this concurrency
model.

4. ZONNON MAPPINGS TO CLR
As mentioned before, the Zonnon object model
differs from the virtual object model proposed by the
.NET CLR. However, most Zonnon concepts can be
mapped rather easily to corresponding CLR notions,
with the help of a few minor tricks. The general
approach taken was trying to make direct use of CLR
high-level constructs rather than to optimize the
Zonnon code image. In the following, we will consider
some important mapping examples.

Zonnon definitions are represented as public
interfaces, and their state variables are mapped to
virtual properties. For example, the following sample
definition

(* Common interface for the random
 numbers generator *)
definition Random;
 var { get } Next : integer; (* read-only *)
 procedure Flush; (* reset *)
end Random.

is mapped to the class:

public interface Random {
 System.Int32 Next { get; }
 void Flush(); }

Implementations are mapped to sealed classes with
the same visibility as corresponding definitions. For
example, a possible implementation of the random
generator will look like as follows:

implementation Random;
 var { private } z : integer;
 procedure { public, get } Next : integer;
 const a = 16807; m = 2147483647;
 q = m div a; r = m mod a;
 var g : integer;
 begin g := a*(z mod q) – r*(z div q);
 if g>0 then z := g else z := g+m end;
 return z*(1.0/m)
 end Next;
 procedure Flush;
 begin z := 3.1459 end Flush;
begin Flush;
end Random.

The compiler will generate code for this
implementation that corresponds to the C# class:

public sealed class Random_implem : Random
{
 private System.Int32 z;
 System.Int32 Random.Next { get { …; } }
 void Random.Flush () { z = 3.1459; }
 public Random_Implem() { Flush(); } }

If no implementation is specified for a definition then
the compiler generates a default implementation with

trivial properties. The example below illustrates this
for the Random definition:

(*automatically generated definition companion*)
public sealed class Random_default : Random {
 System.Int32 Next_default;
 System.Int32 Random.Next {
 get { return Next_default; } } }

Zonnon object types actually behave like CLR classes
and therefore are mapped to sealed classes with the
same scope of visibility as the object type. In case a
body is specified in an object type, it is mapped into
an instance constructor as shown here:

object { public } R; public sealed class R {
 var x : real; private System.Double x;
begin public R () {
 … x := 777.999; … x = 777.999; … }
end R. }

The relationship “object implements definition” is a
fundamental constituent in the Zonnon object model.
It represents an obligation for an object type to
provide the functionality promised by the definition.
However, notice that a corresponding implementation
(if it exists) is automatically imported by the compiler,
and the object type needs to merely implement the
missing parts and, if desired, to customize the default
implementation. For example:

object R1 implements Random;
 (*implicitly imports Random implementation*)
 (* Procedure Next is reused from
 default implementation *)
 (* Procedure Flush is customized *)
 procedure Flush implements
 Random.Flush;
 begin z := 2.7189; end Flush;
end R.

The “object implements definition” relationship is
represented as a usual interface implemented by the
class. To support the automatic reuse of the default
implementation, its “class” image is aggregated into
the class image of the object itself. Thus, the above
object type shown will be represented as follows:

class R1: Random {
 private Random_implem implem;
 public System.Int32 Random.Next()
 { return implem.Next(); }
 public void Flush() { z = 2.7189; } }

Finally, Zonnon modules are mapped to sealed
classes (either public or internal, depending on the
module’s modifier) with static members, public static
constructor (for the method body) and private
instance constructor (to prevent uncontrolled
creation of module instances) with empty body.

module Test;
 import Random;
 (* both definition and implementation
 are imported *)
 var x : object { Random };
 (* x’s actual type is any type implementing
 Random *)
 object R2 implements Random;
 (*alternative random number implementation*)
 end R2;
begin
 x := new R1; …
 x := new R2; …
end Test.

5. THE ZONNON COMPILER

Compiler overview
The Zonnon compiler is written in C#. It accepts
Zonnon program units and produces conventional
.NET assemblies containing MSIL code and metadata.
The Common Compiler Infrastructure (CCI) provided
by Microsoft is used as a code generation utility and
integration platform.

Technically the compiler is a single dll file that is
directly integrated into Visual Studio and the Zonnon
Builder environment, respectively. A small executable
wrapper is added to make the command-line version
of the compiler.

The Common Compiler Infrastructure
Conceptually, CCI provides three kinds of support for
developing compilers for .NET (see Fig 5.1): high-
level infrastructure (in particular, structures for
building attributed program trees and methods for
performing semantic checks on trees), low-level
support (generating IL code and metadata), and
programming service for integration.

From the programming perspective, the CCI is a set of
C# classes that provide comprehensive support for
implementing compilers and other language tools for
.NET. In reality, the support is not fully
comprehensive as, for example, lexical and syntactical
analyses are left to the user. However, the CCI
supports well the integration into Visual Studio (VS).
With the support of CCI a full integration of a
compiler with all VS components such as editor,
debugger, project manager, online help system etc.
becomes feasible.

The CCI framework should be considered as a part of
the .NET framework, with the namespace Compiler
containing the CCI resources included in the System
namespace. It consists of three major parts:

intermediate representation, a set of transformers, and
an integration service.

Integration

Service

Semantic
Represen-

tation

Assembly
Generation

Service

Visual Studio .NET

Compiler Front End Compiler Back End

Integration

Service

Semantic
Represen-

tation

Assembly
Generation

Service

Visual Studio .NET

Compiler Front End Compiler Back End

Figure 5.1 CCI Architecture

Intermediate Representation (IR) is a rich hierarchy
of C# classes that represent typical constructs of
modern programming languages. The IR hierarchy is
based on the C# language architecture. Its classes
reflect CLR constructs like class, method, statement,
expression etc. plus a number of important notions
not supported by CLR (e.g., nested and anonymous
functions, or closures). This allows compiler
developers to represent the corresponding concepts
of their language directly in terms of a CLR class. In
case a language feature is not presented by a CLR
class, it is possible to extend the original IR class
hierarchy. For each extension the corresponding
transformations must be provided – either as an
extension of a standard “visitor” (see below) or as a
completely new visitor.

Transformers (“Visitors”) is a set of base classes
performing consecutive transformations from an IR
class to a .NET assembly. There are five standard
visitors predefined in CCI: Looker, Declarer,
Resolver, Checker, and Normalizer. All visitors walk
an IR by performing various kinds of transformations.
The Looker visitor (together with its companion
Declarer) replaces Identifier nodes with the
members/locals they resolve into. The Resolver
visitor resolves overloads and deduces expression
result types. The Checker visitor checks for semantic
errors and tries to repair them. Finally, the Normalizer
visitor prepares the serialization into MSIL and
metadata.

All visitors are implemented as classes inheriting from
the CCI StandardVisitor class. It is possible to either
extend the functionality of a visitor by adding
methods for the processing of specific language
constructs , or create a totally new visitor.

Integration Service is a variety of classes and
methods providing integration into Visual Studio. The
classes encapsulate specific data structures and

functionality that are required for editing, debugging,
background compilation etc.

The Zonnon Compiler Architecture
Conceptually, the organization of the compiler is quite
traditional: the Scanner transforms the source text
into a sequence of lexical tokens that are accepted by
the Parser. The Parser performs syntax analysis and
builds an abstract syntax tree (AST) for the
compilation unit using CCI IR classes. Every AST
node is an instance of an IR class. The “semantic”
part of the compiler consists of a series of
consecutive transformations of the AST built by the
Parser. The result of such transformations is a .NET
assembly.

It is worth noting that the Zonnon compiler does not
make use of all CCI features. In particular, instead of
extending the CCI Intermediate Representation by
language-specific nodes, the compiler in fact creates
its own Zonnon-oriented program tree in its first pass
(see the data flow diagram in Fig. 5.2). The main
reason for the extra tree is a clearer separation of the
language-oriented and system-oriented compiler
parts.

Figure 5.2 Compilation data flow

Also, the presence of two trees in the compiler
reflects the conceptual gap between Zonnon and the
CLR. It seems to be principally advantageous to
represent information about Zonnon programs in a
separate data structure that is independent of the
target platform. Such a design leads to an optimal
factoring of the compiler, with key tasks like name
resolution and semantic control manipulating the
Zonnon tree being totally independent of the CLR
and .NET. Furthermore, the conversion from the
Zonnon tree to the CCI tree explicitly implements and
encapsulates the mapping from the Zonnon language
model to the CLR Notice that functions logically
related with both trees, the Zonnon tree and the CCI
tree, are activated during the same compilation pass.

In the future the Zonnon tree will be extensively used
for displaying structural information about Zonnon
programs in VS’ Solution Explorer views and for
generating UML project diagrams by the Zonnon
Builder (see Section 6).

From an architectural point of view, the Zonnon
compiler differs from most “conventional” compilers.

Source Source
CCI
Tree

MSIL+MD
Zonnon

Tree

Zonnon Front End CCI Back End

Source Source
CCI
Tree

MSIL+MD
Zonnon

Tree

Zonnon Front End CCI Back End

In contrast to a “black box” approach whose goal is
to hide algorithms and data structures, our Zonnon
compiler presents itself as an open collection of
resources. In particular, data structures such as
“token sequence” and “AST tree” are exhibited to the
outside world (via a special interface) for reuse by
various programs . The same is true for algorithmic
compiler components. For example, it is possible to
invoke the Scanner to extract tokens from some
specific part of the source code and then have the
Parser build a sub-tree for just this part of the source.

Note that an analogous architecture is used by the
CCI framework to support the deepest integration of
any participating compiler with the Visual Studio
environment. For example, the CCI contains Scanner
and Parser prototype classes that served as base
classes for the Zonnon parser and scanner
components respectively.

6. THE ZONNON BUILDER
The Zonnon Builder is a conventional development
environment comparable with many other IDEs. Our
first goal in equipping the compiler with its own IDE
was to provide an environment that looks familiar to
Pascal programmers who are used to products like
Delphi. On the other hand the Zonnon Builder can be
considered as a simpler and light-weight alternative to
full-featured environments like Visual Studio. The
Zonnon Builder supports the full spectrum of a
typical program development cycle, including source
code editing, compiling, execution, testing and
debugging. The Zonnon Builder supports structured
projects consisting of several source files. Multi-file
projects are compiled into a single assembly. It is
possible to edit project files in different syntax-
oriented editor windows simultaneously.

The second goal of the Zonnon Builder project was
to offer a simple and comprehensible development
environment for novices, specifically supporting the
case of a simplified program development cycle in
that a single program file is being developed,
compiled, debugged and run. Such an option is very
useful and convenient in an educational context .

The Zonnon Builder uses a special window to display
compiler diagnostics. These are actually hyperlinks
that can be clicked directly to visualize the part of the
source code containing the (highlighted) error. In
case of a program crash, the contents of the program
stack are displayed in a separate window. The
sections in the stack window are again hyperlinks
(see Fig.6.1) and clicking at a section again causes the
Builder to display and highlight the corresponding
fragment of the source code.

Figure 6.1 Zonnon program debugging

The Zonnon Builder also provides a simple version
control mechanism. It is possible to save, restore and
compare an arbitrary number of revisions for each
project file (see Fig.6.2).

Figure 6.2 File versioning

Version control for the entire project is also
supported. Each project version holds the state of all
project files at a given time, together with an optional
textual comment.

The Zonnon Builder Implementation
The Zonnon Builder as a whole is implemented in the
form of a conventional .NET application. Its graphical
user interface implementation reuses the standard
.NET libraries System.Drawing and System.Windows.
Forms. Some key components of the Builder such as
the Zonnon-oriented program editor need to directly
call the system API (user32.dll) because some
functionality is missing in the .NET class libraries.

The design of the Zonnon Builder is intentionally
kept largely independent of the specific programming
language. Remaining dependences are encapsulated
in two interfaces (see Fig.6.3).

Figure 6.3 Zonnon Builder implementation

The ICompiler interface hides the implementation of
the compiler. The Zonnon compiler wrapper
implements the interface. The ILanguageLexems
interface hides all language specific parts, for example
the set of tokens. Therefore, it is easy to integrate any
other programming language into the environment.

7. FUTURE WORK
Zonnon and Visual Studio
We aim at a closer integration with the Solution
Explorer, including adequate interpretation of CLR
notions (such as “type”, “class”, “method” etc.) in
accordance with the semantics of the Zonnon
language (“module”, “definition”, “procedure” etc.).
We also strive for a closer integration of the object
content presentation and the “intellisense” feature.

Zonnon Builder
The next Zonnon Builder version will include a code
model for compiled Zonnon programs. Programs will
be presented as a hierarchical tree whose nodes
represent Zonnon compilation units and their
contents , respectively. Another improvement will be
automatic generation of UML diagrams for the static
structure of Zonnon programs. The UML diagrams
will visually present the different relationships
between compilation units. Both presentation forms
(code model and UML diagrams) will be integrated
with the program text presentation. The integration
with the standard CLR debugger is also planned.

8. LESSONS LEARNED
The experience in using the Zonnon language shows
that it is quite convenient and can be used both for
educational purposes (as the first programming
language) and as an implementation tool. Some
practical programs with non-trivial algorithms and
graphical user interface were implemented in this
language. The Chess Notebook program from the
Zonnon web site is among the examples.

We are quite satisfied with the CCI framework. It is a
well-designed, practical, powerful and flexible tool for

building VS integrated compilers. It supports both the
integration of existing compilers into the Visual
Studio and the development of integrated compilers
from scratch. CCI also can be considered as a more
powerful and faster alternative to the
System.Reflection library. The troubles with CCI were
the lack of documentation and the unclear status of
this framework.

9. CONCLUSIONS
Zonnon is the new programming language with a
number of novel programming concepts and
constructs. The language covers a wide range of
programming models. This paper describes the
current state of the Zonnon project: the language, the
compiler and its development environment. The
Zonnon compiler is also integrated into Microsoft’s
Visual Studio .NET environment.

The command-line Zonnon compiler, the Zonnon
Builder, the Zonnon Language Report together with
documentation and a large number of Zonnon
program samples and tests are available on
www.zonnon.ethz.ch.

10. ACKNOWLEDGMENTS
Our thanks go to Herman Venter, Brian Kirk, David
Lightfoot, Alan Freed and to the first Zonnon users
and programmers.

11. REFERENCES
[Ger05] Prof V.Gergel, personal communication.
[Gun04] R. Güntensperger and J. Gutknecht, Active

C#, Proceedings of the 2nd International
Workshop on .NET Technologies, Plzen 2004.

[Gut01] Gutknecht, J., Active Oberon for .NET: An
Exercise in Object Model Mapping, BABEL’01,
Satellite to PLI’01, Florence, IT, 2001.

[Gut02] J.Gutknect, E.Zueff, Zonnon Language
Experiment, or How to Implement a Non-
Conventional Object Model for .NET.
OOPSLA’02, November 4-8, 2002, Seattle,
Washington, USA.

[Gut03] J.Gutknecht, E.Zueff, Zonnon for .NET – A
Language and Compiler Experiment. Joint Modular
Languages Conference, JMLC2003, Klagenfurt,
Austria, August 2003.

[Wir88] Wirth, N., The Programming Language
Oberon. Software – Practice and Experience, 18:7,
671-690, Jul. 1988.

[Zon05] J.Gutknecht, E.Zueff, Zonnon Language
Report, www.zonnon.ethz.ch.

